An SNMP based failure detection service

Matthias Wiesmann, Péter Urbán, Xavier Défago
Overview

• Failure Detection
• SNMP
• SNMP-FD Service
• Conclusion & Future Work
Failure detection

• Basic abstraction for distributed systems
• Needed for solving fundamental problems:
 • Consensus, Atomic broadcast, Atomic commitment
 • Formal definitions: P, S, Ω, ϕ, etc.
• Also outside distributed system community
 • System, Network, Cluster management, Middleware, Grid systems
• Common problem \rightarrow common solution
Failure detection service

- Factorize-out failure detection
 - Shared, separate implementation
 - Complex, adaptive policies
- Proposed in the literature
- Implemented by middleware systems, grid systems
- Problem: *no standard*
 - Every system has its own service and interfaces
Standard Needed

- External standard
 - Connect clients of the service to the service
 - Application, Middleware, Monitoring and administration tools
 - Suspicion notifications, configuration
- Internal standard
 - Use standard for heartbeat messages, internal queries
- We need some form of Middleware
Overview

• Failure Detection
• **SNMP**
• SNMP-FD Service
• Conclusion & Future Work
Why SNMP?

- Simple Network Management Protocol
 - Present in many network attached devices *now*
 - Routers, Smart Switches, UPS, Printers…
- Simple Middleware
 - Offers basic features
 - Relatively lightweight
- Many applicable standard defined
 - Monitoring, fault reporting.
SNMP Architecture

- Network Management Station
 - Manages equipment
- Equipment’s agent
 - Exposes Management Information Base (MIB)
 - Sends asynchronous messages (traps) to NMS.

An SNMP based failure detection service
Overview

• Failure Detection
• SNMP
• **SNMP-FD Service**
• Conclusion & Future Work
An SNMP based failure detection service
Service Architecture

- Distributed architecture
- Daemon runs on each host
 - Monitor local processes
 - Exchange heartbeats
 - Export MIB information
- Can interact with equipment
- Similar to other failure detection service architectures
Features

• Uses many standard MIBs
 • Host Resource MIB → Process state
 • Target & Notification MIB → Subscriber description
 • Alarm MIB → Current suspicion description

• Lightweight messaging:
 • Heartbeat are UDP traps.

• Leverages SNMP
 • Configuration, Security, Interoperability with devices
New MIBs

- Heartbeat MIB
 - Describes heartbeats

- Failure detection MIB
 - Describes failure detector configuration

- Described using standard SNA syntax file

- Accessible using standard tools

SNMP table: SnmpFD::kbhbTable

<table>
<thead>
<tr>
<th>index</th>
<th>interval</th>
<th>lastbeat</th>
<th>lasttime</th>
<th>count</th>
<th>lostcount</th>
<th>mean</th>
<th>stddev</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>kt-dhcp23.jaist.ac.jp</td>
<td>100</td>
<td>2678 0:0:04:38.49</td>
<td>2671</td>
<td>0</td>
<td>99.9955</td>
<td>28.3417</td>
<td>0</td>
<td>356</td>
<td></td>
</tr>
</tbody>
</table>

An SNMP based failure detection service
Implementation

• Validate the architecture
• Implemented in Java
 • Open source libraries
 • SNMP4J, SNMP4J Agent, Apache Libraries
• Available for download
 • http://ddsg.jaist.ac.jp//en/projects/snmp-fd/
Implementation

- Validate the architecture
- Implemented in Java
 - Open source libraries
 - SNMP4J, SNMP4J Agent, Apache Libraries
- Available for download
Performance

- Simple failure detector
- Stable performance
 - Consistent with expectations
 - Validates approach
- Issues
 - High latency
 - High CPU load on receiver

An SNMP based failure detection service
Performance

- Simple failure detector
- Stable performance
 - Consistent with expectations
 - Validates approach
- Issues
 - High latency
 - High CPU load on receiver

An SNMP based failure detection service

SNMP4J Issue, code spends 95% of time there.
An SNMP based failure detection service

Overview

• Failure Detection
• SNMP
• SNMP-FD Service
• Conclusion & Future Work
Conclusion

• Failure detection service
• Standard based approach desirable
• No need for new standard → use existing SNMP
• Approach validated by prototype
• Can be extended with more advance FD techniques
 • Hierarchical FD, adaptive FD, etc.
• Can interact with network devices
 • For instance link-down traps
Future work

• Look into performance issues
 • Optimizations needed in the SNMP4J library.
• Port the framework to the latest version of SNMP4J
 • Support for AgentX
 • Implement framework as sub-agent
• Implement more advanced failure detectors
• Handle network equipment data
Questions?
Questions?

Thank you...