Group Communications and Database Replication: techniques, issues and performance

Matthias Wiesmann
PhD Thesis Exam
May 2002
Group Communications + Databases = Replicated Database
Outline

- Introduction
- Classification
- Failure Semantics
- Performance Simulation
- Conclusion
Outline – Introduction

- Introduction
 - Database Replication
 - Database & Group Communications
 - Problems
 - Solutions – Three axis approach
- Classification
- Failure Semantics
- Performance Simulation
- Conclusion
Database Replication

- One logical database
- N physical copies
- All copies are synchronised
 - Eager replication
- All servers enforce ACID properties
- Network links replicas
- Clients connect to the system
Database Replication
Eager vs Lazy

- Two ways to replicate databases:
 - Eager ⇨ all replicas are synchronised.
 - Lazy ⇨ replicas might diverge (violates ACID).
- Eager replication is considered expensive.
 - Gray et al, 1996
- New approach needed.
Idea: use group communication infrastructure.
- Use broadcasting primitives.
- Old idea (Chang 1984).

Re-use of work already done:
- Strong guarantees.
- Simplified design \(\rightarrow\) components.
- Better performance – less deadlocks.

Recent area of research
- DRAGON Project (EPFL & ETHZ)
- Explorative Work
 - Many techniques.
 - Are all found?
- Two communities:
 - Different terminology
 - Mismatched model (failures)
- Performance?
 - Group communications are considered slow…
Everything is different

<table>
<thead>
<tr>
<th></th>
<th>Distributed Systems</th>
<th>Database Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>Fault-Tolerance</td>
<td>Performance</td>
</tr>
<tr>
<td>What is Replicated</td>
<td>Processes</td>
<td>Data</td>
</tr>
<tr>
<td>Operation Type</td>
<td>Single (Events)</td>
<td>Multiple (Transactions)</td>
</tr>
<tr>
<td>System Model</td>
<td>Synchronous, Asynchronous etc...</td>
<td>Synchronous</td>
</tr>
<tr>
<td>Consistency</td>
<td>Causal, FIFO, Linearisability</td>
<td>1-copy Serialisability</td>
</tr>
</tbody>
</table>
Solution – Three Axis Approach

- **Structural Understanding**
 - Classification

- **Qualitative Understanding**
 - Study of failure semantics

- **Quantitative Understanding**
 - Performance simulation

Classification

Structural

Qualitative

Quantitative

Simulation

Failure

Semantics
Outline – Classification

- Introduction
- Classification
 - Introduction
 - Criterion
 - Examples
- Failure Semantics
- Performance Simulation
- Conclusion
Structural Classification of Techniques

- Highlights similar techniques.
- Systematic exploration of solution space.
- Classify existing techniques.
- Shows technical requirements for each category.
Existing Classifications

- CHKS94, CP92, WPS99
- Cannot handle non-voting replication
- Concentrate on primary back-up
- Do not use orthogonal criterion
- Include lazy techniques
 - Difficult to compare (relax ACID).
Classification – 3 Criterion

- **System Architecture**
 - Primary-Copy or Update-Everywhere.
 - Follows Gray's classification.
- **Number of Network Interactions**
 - $O(1)$ or $O(n)$ network interactions.
- **Transaction Termination**
 - Voting or non-voting.
Criterion 1 – System Architecture

- Where can transactions be submitted
 - Update Everywhere ➡ any server
 - Primary Copy ➡ primary server

- Important for conflict handling.
Criterion 2 – Number of interactions

- How many communications rounds?
 - $O(1)$ One interaction per transaction
 - $O(n)$ One interaction per operation
- Gives idea of network usage
 - We abstract precise protocol.
 - We avoid implementation details.
Criterion 3 – Transaction termination.

- How is the transaction terminated?
 - Multilateral agreement ➭ Strong-Voting
 - Unilateral agreement ➭ Weak-Voting
 - No agreement ➭ Non-Voting

- Is there a synchronization round?

Synchronization:
- Primary-copy: Update-everywhere
- Constant interaction
- Linear interaction
For each replication class

- Abstract Overview
 - Presents general structure
- Many replication techniques
 - List of relevant techniques
- Requirements:
 - On the communication system (order, uniformity)
 - On the database system (determinism)
Point of Determinism

- Determinism important issue
 - How do you quantify determinism?
- Point of Determinism (*PoD*)
 - Marks beginning of deterministic processing.
 - Related to the notion of serialization point.
 - Different databases have different *PoDs.*
Non-Voting Constant Interactions
Primary Copy

- Cold Standby Primary
 - Typical Commercial Configuration.
 - Needs Uniform FIFO Broadcast.
 - Cold Standby (no flow control).
 - Usually 1-Safe.

Primary Server

Other Server
Classical form of replication

- Read One Write All technique (ROWA).
- Each operation is sent to all replicas.
- The transaction is terminated by 2PC protocol.
Typical Group Communication Replication

- Needs total order broadcast.
- Needs a known point of determinism (PoD)
 - If the PoD at the start
 - Active Replication
 - If the PoD after start
 - Certification based replication
 - If the PoD in the middle
 - Possible – never proposed.
Classification – Results

- Classification helps:
 - Explore solution space.
 - Understand the relation between existing techniques.
 - Understand the requirements for:
 - communication system
 - database system.
 - Give Basis for comparing the techniques
 - Used as basis for simulation.
 - Earlier version quoted in Books (Coulouris, Tanenbaum)
Outline – Failure Semantics

- Introduction
- Classification
- Failure Semantics
 - Introduction
 - Roll-Forward Recovery
 - Roll-back recovery
 - Group Safety
- Performance Simulation
- Conclusion
Analysis of Fault Tolerance Semantics

- Group Communications vs Database
 - Different failure models.
 - What are the properties of the combined system?
- Database safety criterion: 1-safe & 2-safe
 - What kind of safety for group communication based database replication?
 - Better suited safety criterion?
- When is a client is notified of a commit?
 - When the transaction committed on one site.
 - 1-Safe
 - When the transaction will commit on all sites
 - 2-Safe
Group Communications based Database Replication

- Group communication model
 - Usually considered: dynamic crash no recovery (views).
 - Existing toolkits are in this model.

- Not adapted for 2-safety
 - Cannot tolerate total crash (majority needs to be up).
 - Recovery based on roll-forward recovery.
 - Even if the first issue could be addressed…
 - …the second issue remains…
- Basis of view based system.
- State if transferred from a good replica.
- Does not work if there is no good replica

Roll-Forward Recovery
To build 2-safe replication, we need:

- To tolerate a full crash
 - crash-recovery model with stable storage

- Roll-back based recovery
 - Messages need to be **successfully** delivered
 - Message are delivered, **and** processed by the application
 - If delivery is not successful ➫ deliver again
 - Message replay
Inter-Layer Messages

- Synchronisation needed between application and communication system
- We need to know when a message is successfully delivered.
A total crash can be recovered.
Classical group communications based replication

- Not 2-safe.
- Is it only 1-safe?

Classical 1-safe replication

- One crash ⇒ lost transaction.
- Group communications, this cannot happen.

We need another safety criterion.
Quantify the number of sites were a transactions is delivered.

<table>
<thead>
<tr>
<th>Transaction Delivered</th>
<th>No Replica</th>
<th>1 Replica</th>
<th>All Replica</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Processing</td>
<td>No Replica</td>
<td>1-Safe</td>
<td>2-Safe</td>
</tr>
<tr>
<td>No Safety (zero-Safe)</td>
<td>1 Replica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-Safe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classification

- Structural
- Qualitative
- Quantitative

Qualitative: Simulation
Quantitative: Failure Semantics
Group Safety – Philosophy

- **2-Safe:**
 - Transaction is safe when *committed* on all sites

- **Group-Safe**
 - Transaction is safe when *delivered* on all sites

- **Durability**
 - Assumes one component never fails
 - Classical safety \Rightarrow stable storage (disk)
 - Group-Safety \Rightarrow group of servers
A technique can be:

- 1-safe and group-safe

What does 1-safety bring?

- Transaction committed on one disc.
- In case of total crash: last chance.

Problem:

- We must block (wait) for this chance.
- Not very useful in practice.
Advantages of Group-Safety alone...

- Decreased latency
 - We do not wait for any stable storage.
 - Writes are executed outside transaction.
- **Group Safe & 1 - Safe**
- **Group Safe**
- **Lazy replication**
 - Considered optimum performance
Group Safety vs Lazy Replication (1)

- Group safety: good alternative to lazy replication
 - Good performance.
 - ACID not violated if less than f crashes occur.

- Orthogonal Approaches
 - In each case, we relax a slow link.
 - Lazy replication \Rightarrow link between servers.
 - Group Safe replication \Rightarrow link with stable storage.
 - Network faster than Disk I/O (LAN).
Group Safe vs Lazy Replication (2)

Structural
Qualitative
Quantitative
Classification
Simulation
Failure Semantics
Group communication based database replication

- Usually not 2-safe (toolkit model) \Rightarrow 1-safe.
- 2-safe is possible (but toolkit is not available).
- But more than 1-safe.
- Group safety is more adapted.
- Group-safe replication (without 1-safety)
 - Offers better performance
Performance – Outline

- Introduction
- Classification
- Failure Semantics
- Performance Simulation
 - Simulator
 - General
 - Scalability
 - Query Load
- Conclusion
- Understand performance of techniques
 - Behaviour with different loads
 - Scalability, load balancing etc...
 - Use of different resources (disk, cpu, network)
 - See practical issues (concurrency, garbage collection)
- Discrete event simulation
- Uses C-Sim (c++ version)
- Low-level resources simulated
 - Disks, CPU and network
- High-level operations executed in the simulator
 - Locking, transaction processing, communication protocols.
- ≈ 35'000 lines of code.
Simulated Techniques

- Follows classification
 - At least one technique per category (except one).
- Classical techniques:
 - Distributed locking, primary copy, lazy
- Group Communication techniques:
 - Active replication, certification, Ser-D.
- Optimisations
 - Group safe, optimistic…
- **Transactions:**
 - 5-15 operations 50% queries

- **Load:**
 - 10 -20 transaction / second

- **System:**
 - 9 Servers and 36 clients

- **Servers:**
 - 2 CPU, 2 Disks, fast ethernet interface (100 Mb/s)
General Performance – Results

- Distributed Locking
 - Network not issue.
 - Synchronisation is.
- Active Replication
 - Serialisation phase
- Primary backup
 - Primary is bottleneck
- G. Com. Based techniques
 - Close to lazy (optimum)
- Clients: 36
- Servers:
 - 2-36
- All technique scale
- Distributed locking
 - Performance degrades when to many servers.
- Low load (10 trx/second)
- Changing query proportion
 - (0% - 100%)
- Active replication
 - Better than primary copy
 - Response collection
- Group Communication
 - Close to lazy (optimum).
Simulation – Conclusion

- Simulation gives insight on behaviour
- Network is **not** bottleneck
 - But synchronisations has impact on performance.
- Group communication technique perform well
 - Practical issues: garbage collection, serialisation, lock contention etc…
Group Communication based database Replication:

- Good approach for database replication.
- Database specific techniques offer good performance.
- Can be made 2-safe (need more work).
- Group Safe replication offers increased performance.
- Many improvements & optimisations possible.
Future Works

- New replication techniques:
 - Shown possible by the classification.
 - Better integration with the communication system.

- Better group communication system
 - Clearer interface with the application.
 - More "hooks" for application optimisations.